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Figure 17.4  Functioning of Microprogrammed Control Unit

1. To execute an instruction, the sequencing logic unit issues a READ command
to the control memory.

2. The word whose address is specified in the control address register is read into
the control buffer register.

3. The content of the control buffer register generates control signals and next-
address information for the sequencing logic unit.

4. The sequencing logic unit loads a new address into the control address regis-
ter based on the next-address information from the control buffer register and
the ALU flags.

All this happens during one clock pulse.

The last step just listed needs elaboration. At the conclusion of each microin-
struction, the sequencing logic unit loads a new address into the control address reg-
ister. Depending on the value of the ALU flags and the control buffer register, one
of three decisions is made:
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* Get the next instruction: Add 1 to the control address register.

¢ Jump to a new routine based on a jump microinstruction: Load the address
field of the control buffer register into the control address register.

* Jump to a machine instruction routine: Load the control address register based
on the opcode in the IR.

Figure 17.4 shows two modules labeled decoder. The upper decoder trans-
lates the opcode of the IR into a control memory address. The lower decoder is
not used for horizontal microinstructions but is used for vertical microinstructions
(Figure 17.1b). As was mentioned, in a horizontal microinstruction every bit in the
control field attaches to a control line. In a vertical microinstruction, a code is used
for each action to be performed [e.g., MAR « (PC)], and the decoder translates
this code into individual control signals. The advantage of vertical microinstruc-
tions is that they are more compact (fewer bits) than horizontal microinstructions,
at the expense of a small additional amount of logic and time delay.

Wilkes Control

As was mentioned, Wilkes first proposed the use of a microprogrammed control
unit in 1951 [WILKS1]. This proposal was subsequently elaborated into a more
detailed design [WILKS3]. It is instructive to examine this seminal proposal.

The configuration proposed by Wilkes is depicted in Figure 17.5. The heart of
the system is a matrix partially filled with diodes. During a machine cycle, one row of
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Figure 17.5  Wilkes’s Microprogrammed Control Unit
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the matrix is activated with a pulse. This generates signals at those points where a
diode is present (indicated by a dot in the diagram). The first part of the row generates
the control signals that control the operation of the processor. The second part gener-
ates the address of the row to be pulsed in the next machine cycle. Thus, each row of
the matrix is one microinstruction, and the layout of the matrix is the control memory.

At the beginning of the cycle, the address of the row to be pulsed is contained in
Register 1. This address is the input to the decoder, which, when activated by a clock
pulse, activates one row of the matrix. Depending on the control signals, either the
opcode in the instruction register or the second part of the pulsed row is passed into
Register II during the cycle. Register I is then gated to Register I by a clock pulse.
Alternating clock pulses are used to activate a row of the matrix and to transfer from
Register II to Register I. The two-register arrangement is needed because the decoder
is simply a combinatorial circuit; with only one register, the output would become the
input during a cycle, causing an unstable condition.

This scheme is very similar to the horizontal microprogramming approach
described earlier (Figure 17.1a). The main difference is this: In the previous descrip-
tion, the control address register could be incremented by one to get the next address.
In the Wilkes scheme, the next address is contained in the microinstruction. To permit
branching, a row must contain two address parts, controlled by a conditional signal
(e.g., flag), as shown in the figure.

Having proposed this scheme, Wilkes provides an example of its use to imple-
ment the control unit of a simple machine. This example, the first known design of a
microprogrammed processor, is worth repeating here because it illustrates many of
the contemporary principles of microprogramming.

The processor of the hypothetical machine includes the following registers:

A multiplicand
B accumulator (least-significant half)
C accumulator (most-significant half)
D shift register

In addition, there are three registers and two 1-bit flags accessible only to the control
unit. The registers are

E serves as both a memory address register (MAR) and temporary storage
F program counter
G another temporary register; used for counting

Table 17.1 lists the machine instruction set for this example. Table 17.2 is the com-
plete set of microinstructions, expressed in symbolic form, that implements the control
unit. Thus, a total of 38 microinstructions is all that is required to define the system
completely.

The first full column gives the address (row number) of each microinstruction.
Those addresses corresponding to opcodes are labeled. Thus, when the opcode for
the add instruction (A) is encountered, the microinstruction at location 5 is executed.
Columns 2 and 3 express the actions to be taken by the ALU and control unit,
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Table 17.1 Machine Instruction Set for Wilkes Example

e C(Acc) + C'(n) to Accy : : Gy
CAcc) - C(n) toce; - : :

U Cmto Ace,

C(Acc2) X C(n) to Ace, where C(m) = 0

‘C(Acq) ton,0to Acc ' '

i(_%C(Accl)ton o

. C(Acc) X z~<"+1> toAcc

. C(Ace) x 2" 10 Acc .

el T ;: IF C(Acc) < 0, transfer control to n,nfC(Acc) = 0, ignore (i. e,pxoceed serially)
fn " Read next ch_atactar on input mechanism into »

., Om .- . Send C(n) to output mechanism: -

Notation: Acc = accumulator
Acc; = most significant half of accumulator
Acc, = least significant half of accumulator
n = storage location n
C(X) = contents of X(X = register or storage location)

respectively. Each symbolic expression must be translated into a set of control signals
(microinstruction bits). Columns 4 and 5 have to do with the setting and use of the
two flags (flip-flops). Column 4 specifies the signal that sets the flag. For example,
(1)C, means that flag number 1 is set by the sign bit of the number in register C. If
column 5 contains a flag identifier, then columns 6 and 7 contain the two alternative
microinstruction addresses to be used. Otherwise, column 6 specifies the address of
the next microinstruction to be fetched.

Instructions 0 through 4 constitute the fetch cycle. Microinstruction 4 presents
the opcode to a decoder, which generates the address of a microinstruction corre-
sponding to the machine instruction to be fetched. The reader should be able to deduce
the complete functioning of the control unit from a careful study of Table 17.2.

Advantages and Disadvantages

The principal advantage of the use of microprogramming to implement a control
unit is that it simplifies the design of the control unit. Thus, it is both cheaper and
less error prone to implement. A hardwired control unit must contain complex logic
for sequencing through the many micro-operations of the instruction cycle. On the
other hand, the decoders and sequencing logic unit of a microprogrammed control
unit are very simple pieces of logic.

The principal disadvantage of a microprogrammed unit is that it will be somewhat
slower than a hardwired unit of comparable technology. Despite this, microprogram-
ming is the dominant technique for implementing control units in pure CISC architec-
tures, due to its ease of implementation. RISC processors, with their simpler instruction
format, typically use hardwired control units. We now examine the microprogrammed
approach in greater detail.
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Table 17.2  Microinstructions for Wilkes Example

4,B.C, ... stand for the various registers in the arithmetical and control register units, C10 D
‘ &emdmgmnsmmmeomputqfregmmaothempmmmb;(b+A)t6€
~moﬂtp&regmerch¢mcmmectedtomeonemputoftheaddmugu(ﬂu5  of

perma ently connected t6 the other input), and the output of the adder to réy erical sy -
m(ag,,u?nmdsformewumwhmeoutpmwthenumhanmumwufﬂgsmmﬁeamﬁﬂt e

: FloGandE- e 1
SoretoG T Ty
p

GioE- N Y R

9 C to Store

T
7] 10 ~Cto Store

R 11 Bob - ELG
L 12 CwD EtoG
G
T
0

B TTTTFw6 WG

T4 Input to Store

2
25
0
19
22
18
0
15 - Store to Output 0
A6 (D + Store)to C7 oo SR T SRR 0
i
20
21
11
23
24
12

i I e (D=Store) 8o 'C. THEREN i
FHENIEE RERR G , ; TR
19  DwB®®  (G-T)WE T
20 CtoD - (1Es .
21 "DtoC(R) ‘ T
T DwC@) . (G-TwE
“BloD T T DE
DBy T T
V0B o ' T %
% BoCc B 0
27 VTtoC Wtk ' 28
28 BtoD EtoG _ mB
79 Dto B (R) G-T)wE 30
30 CoD®R) 2)E 1 3 ®»
31 DwC 2 28 3

SEED

(Continued)



606 CHAPTER 17 / MICROPROGRAMMED CONTROL

Table 17.2 Continued

e 1
28 33
3
& 35
T Cw 36 37
36 Eeplie DtwoC 0

*Right shift. The switching circuits in the arithmetic unit are arranged so that the least significant digit of the
register C is placed in the most significant place of register B during right shift micro-operations, and the most
significant digit of register C (sign digit) is repeated (thus making the correction for negative numbers).

" Left shift. The switching circuits are similarly arranged to pass the most significant digit of register B to the least
significant place of register C during left shift micro-operations.

17.2 MICROINSTRUCTION SEQUENCING

The two basic tasks performed by a microprogrammed control unit are

¢ Microinstruction sequencing: Get the next microinstruction from the control
memory.

« Microinstruction execution: Generate the control signals needed to execute the
microinstruction.

In designing a control unit, these tasks must be considered together, because
both affect the format of the microinstruction and the timing of the control unit. In
this section, we will focus on sequencing and say as little as possible about format
and timing issues. These issues are examined in more detail in the next section.

Design Considerations

Two concerns are involved in the design of a microinstruction sequencing technique:
the size of the microinstruction and the address-generation time. The first concern is
obvious; minimizing the size of the control memory reduces the cost of that component.
The second concern is simply a desire to execute microinstructions as fast as possible.

In executing a microprogram, the address of the next microinstruction to be
executed is in one of these categories:

¢ Determined by instruction register
¢ Next sequential address
* Branch

The first category occurs only once per instruction cycle, just after an instruction is
fetched. The second category is the most common in most designs. However, the design
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cannot be optimized just for sequential access. Branches, both conditional and uncon-
ditional, are a necessary part of a microprogram. Furthermore, microinstruction
sequences tend to be short; one out of every three or four microinstructions could be
a branch [SIEW82]. Thus, it is important to design compact, time-efficient techniques
for microinstruction branching,

Sequencing Techniques

Based on the current microinstruction, condition flags, and the contents of the
instruction register, a control memory address must be generated for the next
microinstruction. A wide variety of techniques have been used. We can group them
into three general categories, as illustrated in Figures 17.6 to 17.8. These categories
are based on the format of the address information in the microinstruction:

... .« | Control
Address | Address | ) eror

1 2 | register

Address

‘m selection

register
Figure 17.6  Branch Control Logic: Two Address Fields
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¢ Two address fields
» Single address field
¢ Variable format

The simplest approach is to provide two address fields in each microinstruction.
Figure 17.6 suggests how this information is to be used. A multiplexer is provided
that serves as a destination for both address fields plus the instruction register. Based
on an address-selection input, the multiplexer transmits either the opcode or one of
the two addresses to the control address register (CAR). The CAR is subsequently
decoded to produce the next microinstruction address. The address-selection signals
are provided by a branch logic module whose input consists of control unit flags plus
bits from the control portion of the microinstruction.

Although the two-address approach is simple, it requires more bits in the
microinstruction than other approaches. With some additional logic, savings can
be achieved. A common approach is to have a single address field (Figure 17.7).
With this approach, the options for next address are

Address B
decoder -
1
Controi
memory
Y
Control :
buffer | Control | Address Control adgress
register : ) regisﬁe1
l l |
y
' Address
selection A

Instruction
register

Figure 17.7 Branch Control Logic: Single Address Field
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* Address field
* Instruction register code
¢ Next sequential address

The address-selection signals determine which option is selected. This approach
reduces the number of address fields to one. Note, however, that the address field
often will not be used. Thus, there is some inefficiency in the microinstruction coding
scheme.

Another approach is to provide for two entirely different microinstruction for-
mats (Figure 17.8). One bit designates which format is being used. In one format, the
remaining bits are used to activate control signals. In the other format, some bits
drive the branch logic module, and the remaining bits provide the address. With the
first format, the next address is either the next sequential address or an address
derived from the instruction register. With the second format, either a conditional
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Control
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Branch Entire
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Gate and

| Branch
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- selection \

Instruction.
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Figure 17.8  Branch Control Logic: Variable Format
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or unconditional branch is being specified. One disadvantage of this approach is
that one entire cycle is consumed with each branch microinstruction. With the other
approaches, address generation occurs as part of the same cycle as control signal
generation, minimizing control memory accesses.

The approaches just described are general. Specific implementations will often
involve a variation or combination of these techniques.

Address Generation

We have looked at the sequencing problem from the point of view of format consid-
erations and general logic requirements. Another viewpoint is to consider the various
ways in which the next address can be derived or computed.

Table 17.3 lists the various address generation techniques. These can be
divided into explicit techniques, in which the address is explicitly available in the
microinstruction, and implicit techniques, which require additional logic to gener-
ate the address.

We have essentially dealt with the explicit techniques. With a two-field
approach, two alternative addresses are available with each microinstruction. Using
either a single address field or a variable format, various branch instructions can be
implemented. A conditional branch instruction depends on the following types of
information:

¢ ALU flags

¢ Part of the opcode or address mode fields of the machine instruction
* Parts of a selected register, such as the sign bit

» Status bits within the control unit

Several implicit techniques are also commonly used. One of these, mapping, is
required with virtually all designs. The opcode portion of a machine instruction must
be mapped into a microinstruction address. This occurs only once per instruction
cycle.

A common implicit technique is one that involves combining or adding two
portions of an address to form the complete address. This approach was taken for
the IBM 5/360 family [TUCK67] and used on many of the S/370 models. We will use
the IBM 3033 as an example.

The control address register on the IBM 3033 is 13 bits long and is illustrated in
Figure 17.9. Two parts of the address can be distinguished. The highest-order 8 bits
(00-07) normally do not change from one microinstruction cycle to the next. During

Table 17.3 Microinstruction Address Generation

Techniques
Explicit Implicit
Two-field Mapping
Unconditional branch Addition
Conditional branch Residual control
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Figure 17.9  1BM 3033 Control Address Register

the execution of a microinstruction, these 8 bits are copied directly from an 8-bit field
of the microinstruction (the BA field) into the highest-order 8 bits of the control
address register. This defines a block of 32 microinstructions in control memory. The
remaining S bits of the control address register are set to specify the specific address of
the microinstruction to be fetched next. Each of these bits is determined by a 4-bit
field (except one is a 7-bit field) in the current microinstruction; the field specifies the
condition for setting the corresponding bit. For example, a bit in the control address
register might be set to 1 or 0 depending on whether a carry occurred on the last ALU
operation.

The final approach listed in Table 17.3 is termed residual control. This approach
involves the use of a microinstruction address that has previously been saved in tem-
porary storage within the control unit. For example, some microinstruction sets come
equipped with a subroutine facility. An internal register or stack of registers is used to
hold return addresses. An example of this approach is taken on the LSI-11, which we
now examine.

LSI-11 Microinstruction Sequencing

The LSI-11 is a microcomputer version of a PDP-11, with the main components of
the system residing on a single board. The LSI-11 is implemented using a micropro-
grammed control unit [SEBE76).

The LSI-11 makes use of a 22-bit microinstruction and a control memory of 2K
22-bit words. The next microinstruction address is determined in one of five ways:

* Next sequential address: In the absence of other instructions, the control unit’s
control address register is incremented by 1.

* Opcode mapping: At the beginning of each instruction cycle, the next microin-
struction address is determined by the opcode.

* Subroutine facility: Explained presently.

* Interrupt testing: Certain microinstructions specify a test for interrupts. If an
interrupt has occurred, this determines the next microinstruction address.

¢ Branch: Conditional and unconditional branch microinstructions are used.
A one-level subroutine facility is provided. One bit in every microinstruction is

dedicated to this task. When the bit is set, an 11-bit return register is loaded with the
updated contents of the control address register. A subsequent microinstruction that
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specifies a return will cause the control address register to be loaded from the return
register.

The return is one form of unconditional branch instruction. Another form of
unconditional branch causes the bits of the control address register to be loaded from
11 bits of the microinstruction. The conditional branch instruction makes use of a 4-bit
test code within the microinstruction. This code specifies testing of various ALU
condition codes to determine the branch decision. If the condition is not true, the next
sequential address is selected. If it is true, the 8 lowest-order bits of the control address
register are loaded from 8 bits of the microinstruction. This allows branching within
a 256-word page of memory.

As can be seen, the LSI-11 includes a powerful address sequencing facility
within the control unit. This allows the microprogrammer considerable flexibility
and can ease the microprogramming task. On the other hand, this approach requires
more control unit logic than do simpler capabilities.

17.3 MICROINSTRUCTION EXECUTION

The microinstruction cycle is the basic event on a microprogrammed processor.
Each cycle is made up of two parts: fetch and execute. The fetch portion is deter-
mined by the generation of a microinstruction address, and this was dealt with in the
preceding section. This section deals with the execution of a microinstruction.

Recall that the effect of the execution of a microinstruction is to generate control
signals. Some of these signals control points internal to the processor. The remaining
signals go to the external control bus or other external interface. As an incidental func-
tion, the address of the next microinstruction is determined.

The preceding description suggests the organization of a control unit shown in
Figure 17.10. This slightly revised version of Figure 17.4 emphasizes the focus of this
section. The major modules in this diagram should by now be clear. The sequencing
logic module contains the logic to perform the functions discussed in the preceding
section. It generates the address of the next microinstruction, using as inputs the in-
struction register, ALU flags, the control address register (for incrementing), and the
control buffer register. The last may provide an actual address, control bits, or both. The
module is driven by a clock that determines the timing of the microinstruction cycle.

The control logic module generates control signals as a function of some of the
bits in the microinstruction. It should be clear that the format and content of the
microinstruction will determine the complexity of the control logic module.

A Taxonomy of Microinstructions

Microinstructions can be classified in a variety of ways. Distinctions that are com-
monly made in the literature include

Vertical/horizontal

Packed/unpacked

Hard/soft microprogramming

Direct/indirect encoding
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Figure 17.10  Control Unit Organization

All of these bear on the format of the microinstruction. None of these terms has
been used in a consistent, precise way in the literature. However, an examination
of these pairs of qualities serves to illuminate microinstruction design alterna-
tives. In the following paragraphs, we first look at the key design issue underlying
all of these pairs of characteristics, and then we look at the concepts suggested by
each pair.

In the original proposal by Wilkes [WILK51], each bit of a microinstruction either
directly produced a control signal or directly produced one bit of the next address. We
have seen, in the preceding section, that more complex address sequencing schemes,
using fewer microinstruction bits, are possible. These schemes require a more complex
sequencing logic module. A similar sort of trade-off exists for the portion of the microin-
struction concerned with control signals. By encoding control information, and subse-
quently decoding it to produce control signals, control word bits can be saved.

How can this encoding be done? To answer that, consider that there are a
total of K different internal and external control signals to be driven by the control
unit. In Wilkes’s scheme, K bits of the microinstruction would be dedicated to
this purpose. This allows all of the 2% possible combinations of control signals to
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be generated during any instruction cycle. But we can do better than this if we
observe that not all of the possible combinations will be used. Examples include
the following:

* Two sources cannot be gated to the same destination (e.g., C; and Cg in
Figure 16.5).

* A register cannot be both source and destination (e.g., Cs and C;, in Figure 16.5).
* Only one pattern of control signals can be presented to the ALU at a time.

* Only one pattern of control signals can be presented to the external control
bus at a time.

So, for a given processor, all possible allowable combinations of control signals
could be listed, giving some number Q < 2X possibilities. These could be encoded with
log, Q bits, with (log, @) < K. This would be the tightest possible form of encoding
that preserves all allowable combinations of control signals. In practice, this form of
encoding is not used, for two reasons:

* It is as difficult to program as a pure decoded (Wilkes) scheme. This point is
discussed further presently.

* It requires a complex and therefore slow control logic module.
Instead, some compromises are made. These are of two kinds:

¢ More bits than are strictly necessary are used to encode the possible combi-
nations.

* Some combinations that are physically allowable are not possible to encode.

The latter kind of compromise has the effect of reducing the number of bits. The net
result, however, is to use more than log, Q bits.

In the next subsection, we will discuss specific encoding techniques. The remainder
of this subsection deals with the effects of encoding and the various terms used to
describe it.

Based on the preceding, we can see that the control signal portion of the
microinstruction format falls on a spectrum. At one extreme, there is one bit for each
control signal; at the other extreme, a highly encoded format is used. Table 17.4 shows
that other characteristics of a microprogrammed control unit also fall along a spec-
trum and that these spectra are, by and large, determined by the degree-of-encoding
spectrum.

The second pair of items in the table is rather obvious. The pure Wilkes scheme
will require the most bits. It should also be apparent that this extreme presents the
most detailed view of the hardware. Every control signal is individually controllable
by the microprogrammer. Encoding is done in such a way as to aggregate functions
or resources, so that the microprogrammer is viewing the processor at a higher, less
detailed level. Furthermore, the encoding is designed to ease the microprogramming
burden. Again, it should be clear that the task of understanding and orchestrating the
use of all the control signals is a difficult one. As was mentioned, one of the conse-
quences of encoding, typically, is to prevent the use of certain otherwise allowable
combinations.
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Table 17.4 The Microinstruction Spectrum
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The preceding paragraph discusses microinstruction design from the micro-
programmer’s point of view. But the degree of encoding also can be viewed from
its hardware effects. With a pure unencoded format, little or no decode logic. is
needed; each bit generates a particular control signal. As more compact and more
aggregated encoding schemes are used, more complex decode logic is needed.
This, in turn, may affect performance. More time is needed to propagate signals
through the gates of the more complex control logic module. Thus, the execution
of encoded microinstructions takes longer than the execution of unencoded ones.

Thus, all of the characteristics listed in Table 17.4 fall along a spectrum of
design'strategies. In general, a design that falls toward the left end of the spectrum
is intended to optimize the performance of the control unit. Designs toward the
right end are more concerned with optimizing the process of microprogramming.
Indeed, microinstruction sets near the right end of the spectrum look very much
like machine instruction sets. A good example of this is the LSI-11 design,
described later in this section. Typically, when the objective is simply to implement
a control unit, the design will be near the left end of the spectrum. The IBM 3033
design, discussed presently, is in this category. As we shall discuss later, some sys-
tems permit a variety of users to construct different microprograms using the
same microinstruction facility. In the latter cases, the design is likely to fall near
the right end of the spectrum.

We can now deal with some of the terminology introduced earlier. Table 17.4
indicates how three of these pairs of terms relate to the microinstruction spectrum.
In essence, all of these pairs describe the same thing but emphasize different design
characteristics.

The degree of packing relates to the degree of identification between a given
control task and specific microinstruction bits. As the bits become more packed, a
given number of bits contains more information. Thus, packing connotes encoding.
The terms horizontal and vertical relate to the relative width of microinstructions.
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[SIEW82] suggests as a rule of thumb that vertical microinstructions have lengths in
the range of 16 to 40 bits and that horizontal microinstructions have lengths in the
range of 40 to 100 bits. The terms hard and soft microprogramming are used to sug-
gest the degree of closeness to the underlying control signals and hardware layout.
Hard microprograms are generally fixed and committed to read-only memory. Soft
microprograms are more changeable and are suggestive of user microprogramming.

The other pair of terms mentioned at the beginning of this subsection refers to
direct versus indirect encoding, a subject to which we now turn.

Microinstruction Encoding

In practice, microprogrammed control units are not designed using a pure unencod-
ed or horizontal microinstruction format. At least some degree of encoding is used
to reduce control memory width and to simplify the task of microprogramming.

The basic technique for encoding is illustrated in Figure 17.11a. The microinstruc-
tion is organized as a set of fields. Each field contains a code, which, upon decoding,
activates one or more control signals.

see Field Field Field eos
—_— A ——
Decode Decode Decode
logic logic logic
—

Control signals

(a) Direct encoding
soo Field Field Field see
—_—
Decode Decode Decode
logic logic logic
Decode
logic
l ces l 4 coe Y
—_——
Control signals

(b) Indirect encoding

Figure 17.11 Microinstruction Encoding
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Let us consider the implications of this layout. When the microinstruction is
executed, every field is decoded and generates control signals. Thus, with N fields,
N simultaneous actions are specified. Each action results in the activation of one
or more control signals. Generally, but not always, we will want to design the for-
mat so that each control signal is activated by no more than one field. Clearly,
however, it must be possible for each control signal to be activated by at least
one field.

Now consider the individual field. A field consisting of L bits can contain one of
2 codes, each of which can be encoded to a different control signal pattern. Because
only one code can appear in a field at a time, the codes are mutually exclusive, and,
therefore, the actions they cause are mutually exclusive.

The design of an encoded microinstruction format can now be stated in
simple terms:

 Organize the format into independent fields. That is, each field depicts a set of
actions (pattern of control signals) such that actions from different fields can
occur simultaneously.

» Define each field such that the alternative actions that can be specified by the
field are mutually exclusive. That is, only one of the actions specified for a given
field could occur at a time.

Two approaches can be taken to organizing the encoded microinstruction into
fields: functional and resource. The functional encoding method identifies functions
within the machine and designates fields by function type. For example, if various
sources can be used for transferring data to the accumulator, one field can be desig-
nated for this purpose, with each code specifying a different source. Resource encod-
ing views the machine as consisting of a set of independent resources and devotes
one field to each (e.g., I/O, memory, ALU).

Another aspect of encoding is whether it is direct or indirect (Figure 17.11b).
With indirect encoding, one field is used to determine the interpretation of another
field. For example, consider an ALU that is capable of performing eight different
arithmetic operations and eight different shift operations. A 1-bit field could be used
to indicate whether a shift or arithmetic operation is to be used; a 3-bit field would
indicate the operation. This technique generally implies two levels of decoding,
increasing propagation delays.

Figure 17.12 is a simple example of these concepts. Assume a processor with a
single accumulator and several internal registers, such as a program counter and a
temporary register for ALU input. Figure 17.12a shows a highly vertical format. The
first 3 bits indicate the type of operation, the next 3 encode the operation, and the
final 2 select an internal register. Figure 17.12b is a more horizontal approach,
although encoding is still used. In this case, different functions appear in different
fields.

LSI-11 Microinstruction Execution

The LSI-11 [SEBE76] is a good example of a vertical microinstruction approach. We
look first at the organization of the control unit, then at the microinstruction format.
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Simple register transfers

l0,0,0[0,0 0] | | MDR Register
lo,0,0/0,0,1] | | Repister— MDR
[0,0,0[0,1,0] | | MAR Register
=
Register
Memory operations select
loj0,1J0,0,0] | ] Read

Lo,0,10 0, 1] | | write
Special sequencing operations
L0,1,0[0,0,0] | ] CSAR Decoded MDR

lo,1,0[0,0,1] | ] CSAR« Constant (in next byte)

Loyt 0[0,1y0 | ] s

ALU operations
lo,1,1]0,0,0] | | AcCeACC + Register

lo,1;1]0,0,1] | | AcceAcC - Register
| ACC « Register

Lolllllolllol !

loy1,1]0,1,1] | | Repistereacc
lo,1,1]1,0,0] | | AcCe Register +1
L/Y\J
Register
select

(a) Vertical microinstruction format

01234567 8 91011121314151617 18

I O U N T N N Y B
Field 1 2 3 4 5 6

Field definition
1 - register transfer 4 - ALU operation
2 - memory operation S - register selection
3 - sequencing operation 6 - Constant

(b) Horizontal microinstruction format

Figure 17.12  Alternative Microinstruction Formats for
a Simple Machine
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LSI-11 Control Unit Organization The LSI-11 is the first member of the
PDP-11 family that was offered as a single-board processor. The board contains
three LSI chips, an internal bus known as the microinstruction bus (MIB), and some
additional interfacing logic.

Figure 17.13 depicts, in simplified form, the organization of the LSI-11
processor. The three chips are the data, control, and control store chips. The data
chip contains an 8-bit ALU, twenty-six 8-bit registers, and storage for several
condition codes. Sixteen of the registers are used to implement the eight 16-bit
general-purpose registers of the PDP-11. Others include a program status word,
memory address register (MAR), and memory buffer register. Because the ALU
deals with only 8 bits at a time, two passes through the ALU are required to
implement a 16-bit PDP-11 arithmetic operation. This is controlled by the
microprogram.

The control store chip or chips contain the 22-bit-wide control memory. The
control chip contains the logic for sequencing and executing microinstructions. It
contains the control address register, the control data register, and a copy of the
machine instruction register.

Control
store
11
Vi
A 22
_ ] 2 Microinstruction
] [ > bus
18 16
/ y
Control Data
chip chip
y A
4
¥ 16
3 Y
Bus control \

and other

processor Bus logic
‘beard logic
: LSI-11 system

bus

Z With no number indicated, a path
with multiple signals

Figure 17.13  Simplified Block Diagram of the LSI-11 Processor
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Control data register ]——
[

Control
store

Control address register ]

1

Microprogram |-«

sequence
control
l Return register ]1——f
- Translation
[ Instruction register I—» array

i

INT

Figure 17.14  Organization of the LSI-11 Control Unit

The MIB ties all the components together. During microinstruction fetch, the
control chip generates an 11-bit address onto the MIB. Control store is accessed, pro-
ducing a 22-bit microinstruction, which is placed on the MIB. The low-order 16 bits
go to the data chip, while the low-order 18 bits go to the control chip. The high-order
4 bits control special processor board functions.

Figure 17.14 provides a still simplified but more detailed look at the LSI-11
control unit: The figure ignores individual chip boundaries. The address sequencing
scheme described in Section 17.2 is implemented in two modules. Overall sequence
control is provided by the microprogram sequence control module, which is capable
of incrementing the microinstruction address register and performing unconditional
branches. The other forms of address calculation are carried out by a separate trans-
lation array. This is a combinatorial circuit that generates an address based on the
microinstruction, the machine instruction, the microinstruction program counter, and
an interrupt register.

The translation array comes into play on the following occasions:
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* The opcode is used to determine the start of a microroutine.

¢ At appropriate times, address mode bits of the microinstruction are tested to
perform appropriate addressing.

Interrupt conditions are periodically tested.

* Conditional branch microinstructions are evaluated.

LSI-11 Microinstruction Format The LSI-11 uses an extremely vertical
microinstruction format, which is only 22 bits wide. The microinstruction set
strongly resembles the PDP-11 machine instruction set that it implements. This
design was intended to optimize the performance of the control unit within the
constraint of a vertical, easily programmed design. Table 17.5 lists some of the
LSI-11 microinstructions.

Figure 17.15 shows the 22-bit LSI-11 microinstruction format. The high-order
4 bits control special functions on the processor board. The translate bit enables the
translation array to check for pending interrupts. The load return register bit is used
at the end of a microroutine to cause the next microinstruction address to be loaded
from the return register.

Table 17.5 Some LSI-11 Microinstructions

Arithmetic Operations el General Operations
Add word (byte, literal) . MOV word (byte)
Test word (bytqﬁ&mi) o N Jump
Increment word (byte} byl .o = <Return
Increment word (byte) by2 ~ G " Conditional jump
Negate word (byte) DU R Gt (reset) flags B
Conditionally incremerit (decrement) byte - Load Glow
Conditionally add word (byte) ‘- Pl o - Conditionally MOV word (byte)
Add word (byte) with carry
s Canﬂih'nmﬂ}md@ dm . ,. D is iy : i : W ()petstiom
Subtract word fbyte) * 7 Input word’ (byte)
Compare word (byte, literal) Input status word (byte)
Subtract word (byte) with carry  Read . L
Decrement word (byte) by 1 Wntc

i

| ifﬁeaa(wme)andma cat word (oyte) by 1
o Read (wnte) and mcrement’word (byte) by2

LoglcalOpemhons

AND word (byte, literal)

Test word (byte)

OR word (byte)

Exclusive-OR word (uyte‘)” TE
' Bit clear word (byte) =
shxﬂword(byte)ﬁkhmeﬁ)mm(wimom)ww N

Selate Eniad b e

i
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4 11 16
Special . .
functions Encoded micro-operations

T

Load return register
Translate

(a) Format of the full LSI-11 microinstruction

5 11

Opcode Jump address

Unconditional jump microinstruction format

4 4 8

Opcode Test code Jump address

Conditional jump microinstruction format

4 8 4

Opcode Lteral value A register

Literal microinstruction format

8 4 4

Opcode B register | A register

Register jump microinstruction format
(b) Format of the encoded part of the LSI-11 microinstruction

Figure 17.15 LSI-11 Microinstruction Format

The remaining 16 bits are used for highly encoded micro-operations. The format
is much like a machine instruction, with a variable-length opcode and one or more
operands.

IBM 3033 Microinstruction Execution

The standard IBM 3033 control memory consists of 4K words. The first half of these
(0000-07FF) contain 108-bit microinstructions, while the remainder (0800-OFFF)
are used to store 126-bit microinstructions. The format is depicted in Figure 17.16.
Although this is a rather horizontal format, encoding is still extensively used. The
key fields of that format are summarized in Table 17.6.

The ALU operates on inputs from four dedicated, non-user-visible registers,
A, B, C, and D. The microinstruction format contains fields for loading these regis-
ters from user-visible registers, performing an ALU function, and specifying a user-
visible register for storing the result. There are also fields for loading and storing
data between registers and memory.

The sequencing mechanism for the IBM 3033 was discussed in Section 17.2.
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Table 17.6  IBM 3033 Microinstruction Control Fields

ALU Control Fields

AAQ3) Load A register from one of data registers
AB(3) Load B register from one of data registers
AC(3) Load C register from one of data registers
AD(®3) Load D register from one of data registers
AE(4) Route specified A bits to ALU
AF(4) Route specified B bits to ALU
AG(5) Specifies ALU arithmetic operation on A input
AH(4) Specifies ALU arithmetic operation on B input
AJ(1) Specifies D or B input to ALU on B side
AK(4) Route arithmetic output to shifter
CA(3) Load F register
CB(1) Activate shifter
CC(5) Specifies logical and carry functions
CE(7) Specifies shift amount !

Sequencing and Branching Fields
AL(1) End operation and perform branch
BA(8) Set high-order bits (00-07) of control address register
BB(4) Specifies condition for setting bit 8 of control address register
BC(4) Specifies condition for setting bit 9 of control address register
BD(4) Specifies condition for setting bit 10 of control address register
BE(4) Specifies condition for setting bit 11 of control address register
BF(7) Specifies condition for setting bit 12 of control address register

17.4 TI 8800

The Texas Instruments 8800 Software Development Board (SDB) is a micropro-
grammable 32-bit computer card. The system has a writable control store, imple-
mented in RAM rather than ROM. Such a system does not achieve the speed or
density of a microprogrammed system with a ROM control store. However, it is use-
ful for developing prototypes and for educational purposes.

The 8800 SDB consists of the following components (Figure 17.17):

¢ Microcode memory

* Microsequencer

* 32-bit ALU

*» Floating-point and integer processor
¢ Local data memory

Two buses link the internal components of the system. The DA bus provides
data from the microinstruction data field to the ALU, the floating-point processor,
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s Next microcode address
]
32K x 128 bits
| 128 Microinstruction
1
Micreinstruction
pipeline register
Control and : —
microinstruction 9% I DA31-DA00
32
\ \
| { ‘
ACTS832 . floating-point and - -
- . micmsequnce
registered ALU integer processor i
\ h ‘
* 32 A
1 System Y bus 1
\ Y
Local data
sémiory ’ PC/AT
32K x 32 bits . Interface

$16

Figure 17.17 TI 8800 Block Diagram

or the microsequencer. In the latter case, the data consists of an address to be used
for a branch instruction. The bus can also be used for the ALU or microsequencer to
provide data to other components. The System Y bus connects the ALU and floating-
point processor to local memory and to external modules via the PC interface.

The board fits into an IBM PC-compatible host computer. The host computer
provides a suitable platform for microcode assembly and debug.

Microinstruction Format

The microinstruction format for the 8800 consists of 128 bits broken down into 30
functional fields, as indicated in Table 17.7. Each field consists of one or more bits,
and the fields are grouped into five major categories:

¢ Control of board

e 8847 floating-point and integer processor chip
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Table 17.7 TI 8800 Microinstruction Format

Field Number
Number of Bits Description
Control of Board
1 5 Select condition code inpui 8
2 1 Enable/disable external I/O request signal
3 2 Enable/disable local data memory read/write operations
4 1 Load status/do no load status
5 2 - Determine unit driving Y bus
6 2 Determine unit driving DA bus
8847 Floating Point and Integer Processing Chip
1. C register control: clock, do not clock
1 Select most significant or least significant bits for Y bus
1 C register data source: ALU, multiplexer
10 4 Select IEEE or FAST mode for ALU and MUL
11 8 Select sources for data operands: RA registers, RB registers, P register, 5.register,
C register .
12 1 RB register control: clock, do not clock
13 1 RA register control: clock, do not clock
14 2 Data source confirmation
15 2 Enable/disable pipeline registers
16 11 8847 ALU function .
8832 Registered ALU
17 2 Write enable/disable data output to selected register: most significant half, least
significant half
18 2 Select register file data source: DA bus, DB bus, ALUY MUX output, system Y bus
19 3 Shift instruction modifier
20 1 Carry in: force, do not force » .
21 2 Set ALU configuration mode: 32, 16, or 8 bits .
22 2 Select input to 5 multiplexer: register file, DB bus, MQ register
23 1 Select input to R multiplexer: register file, DA bus )
24 6 Select register in file C for write
25 6 Select register in file B for read
26. 6 Select register in file A for write
27 8 ALU function
8818 Microsequencer
28 12 Control input signals to the 8818
WCS Data Field
29 16 Most significant bits of writable control store data field
30 16 Least significant bits of writable control store data field
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* 8832 registered ALU
» 8818 microsequencer
* WCS data field

As indicated in Figure 17.17, the 32 bits of the WCS data field are fed into the DA
bus to be provided as data to the ALU, floating-point processor, or microsequencer.
The other 96 bits (fields 1-27) of the microinstruction are control signals that are fed
directly to the appropriate module. For simplicity, these other connections are not
shown in Figure 17.17.

The first six fields deal with operations that pertain to the control of the board,
rather than controlling an individual component. Control operations include

* Selecting condition codes for sequencer control. The first bit of field 1 indicates
whether the condition flag is to be set to 1 or 0, and the remaining 4 bits indi-
cate which flag is to be set.

* Sending an I/O request to the PC/AT.
* Enabling local data memory read/write operations.

* Determining the unit driving the system Y bus. One of the four devices attached
to the bus (Figure 17.17) is selected.

The last 32 bits are the data field, which contain information specific to a partic-
ular microinstruction.

The remaining fields of the microinstruction are best discussed in the context of
the device that they control. In the remainder of this section, we discuss the microse-
quencer and the registered ALU. The floating-point unit introduces no new concepts
and is skipped.

Microsequencer

The principal function of the 8818 microsequencer is to generate the next microinstruc-
tion address for the microprogram. This 15-bit address is provided to the microcode
memory (Figure 17.17).

The next address can be selected from one of five sources:

1. The microprogram counter (MPC) register, used for repeat (reuse same address)
and continue (increment address by 1) instructions.

[

The stack, which supports microprogram subroutine calls as well as iterative
loops and returns from interrupts.

3. The DRA and DRB ports, which provide two additional paths from external
hardware by which microprogram addresses can be generated. These two ports
are connected to the most significant and least significant 16 bits of the DA bus,
respectively. This allows the microsequencer to obtain the next instruction address
from the WCS data field of the current microinstruction or from a result calcu-
lated by the ALU.

4. Register counters RCA and RCB, which can be used for additional address storage.

'h

- An external input onto the bidirectional Y port to support external interrupts.
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DA31-DA16 DA15-DA00

Stack

Microprogram
counter/
incrementer

A

(DRA) (DRA)
/ '
9 -
\
Dual
registers/counters
B3-B0
, Y Y
Interrupt Y output
ret}lm multiplexer
register
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Figure 17.18 TI 8818 Microsequencer

Figure 17.18 is a logical block diagram of the 8818. The device consists of the
following principal functional groups:

* A 16-bit microprogram counter (MPC) consisting of a register and an incre-

menter

* Two register counters, RCA and RCB, for counting loops and iterations, storing

branch addresses, or driving external devices

¢ A 65-word by 16-bit stack, which allows microprogram subroutine calls and

interrupts
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* An interrupt return register and Y output enable for interrupt processing at
the microinstruction level

* A'Y output multiplexer by which the next address can be selected from MPC,
RCA, RCB, external buses DRA and DRB, or the stack

Registers/Counters The registers RCA and RCB may be loaded from the DA
bus, either from the current microinstruction or from the output of the ALU. The
values may be used as counters to control the flow of execution and may be auto-
matically decremented when accessed. The values may also be used as microinstruc-
tion addresses to be supplied to the Y output multiplexer. Independent control of
both registers during a single microinstruction cycle is supported with the exception
of simultaneous decrement of both registers.

Stack The stack allows multiple levels of nested calls or interrupts, and it can be
used to support branching and looping. Keep in mind that these operations refer to
the control unit, not the overall processor, and that the addresses involved are those
of microinstructions in the control memory.

Six stack operations are possible:

Clear, which sets the stack pointer to zero, emptying the stack
Pop, which decrements the stack pointer

N -

. Push, which puts the contents of the MPC, interrupt return register, or DRA bus
onto the stack and increments the stack pointer

Ea

Read, which makes the address indicated by the read pointer available at the Y
output multiplexer

. Hold, which causes the address of the stack pointer to remain unchanged

S

Load stack pointer, which inputs the seven least significant bits of DRA to the
stack pointer

Control of Microsequencer The microsequencer is controlled primarily by the
12-bit field of the current microinstruction, field 28 (Table 17.7). This field consists of
the following subfields:

* OSEL (1 bit): Output select. Determines which value will be placed on the output
of the multiplexer that feeds into the DRA bus (upper-left-hand corner of Figure
17.18).The output is selected to come from either the stack or from register RCA.
DRA then serves as input to either the Y output multiplexer or to register RCA.

* SELDR (1 bit): Select DR bus. If set to 1, this bit selects the external DA bus
as input to the DRA/DRB buses. If set to 0, selects the output of the DRA
multiplexer to the DRA bus (controlled by OSEL) and the contents of RCB
to the DRB bus.

* ZEROIN (1 bit): Used to indicate a conditional branch. The behavior of the
microsequencer will then depend on the condition code selected in field 1
(Table 17.7).

* RC2-RC0 (3 bits): Register controls. These bits determine the change in the
contents of registers RCA and RCB. Each register can either remain the same,
decrement, or load from the DRA/DRB buses.
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» S$2-S0 (3 bits): Stack controls. These bits determine which stack operation is to
be performed.

o MUX2-MUXO0: Output controls. These bits, together with the condition code if
used, control the Y output multiplexer and therefore the next microinstruction
address. The multiplexer can select its output from the stack, DRA, DRB, or MPC.

These bits can be set individually by the programmer. However, this is typically
not done. Rather, the programmer uses mnemonics that equate to the bit patterns
that would normally be required. Table 17.8 lists the 15 mnemonics for field 28.
A microcode assembler converts these into the appropriate bit patterns.

As an example, the instruction INC88181 is used to cause the next microinstruc-
tion in sequence to be selected, if the currently selected condition code is 1. From
Table 17.8, we have

INC88181 = 000000111110
which decodes directly into
e OSEL = 0: Selects RCA as output from DRA output MUX; in this case the
selection is irrelevant.

e SELDR = 0: As defined previously; again, this is irrelevant for this instruction.

¢ ZEROIN = 0: Combined with the value for MUX, indicates no branch should
be taken.

¢« R = 000: Retain current value of RA and RC.
¢ S = 111: Retain current state of stack.

*+ MUX = 110: Choose MPC when condition code = 1, DRA when condition
code = 0.

Table 17.8  TI 8818 Microsequencer Microinstruction Bits (Field 28)

Mnemonic Value Description

RST8818 000000000110 Reset instruction

BRAS88181 011000111000 Branch to DRA instruction

BRAS88180 010000111110 Branch to DRA instruction

INC88181 000000111110 Continue instfuction

INC88180 001000001000 Continue instruction

CALS88181 010000110000 Jump to subroutine at address specified by DRA
CALS88180 010000101110 Jump to subroutine at address specified by DRA
RETS818 000000011010 Return from subroutine

PUSHS8818 000000110111 Push interrupt return address onto stack
POP8818 100000010000 Return from interrupt

LOADDRA 000010111110 Load DRA counter from DA bus

LOADDRB 000110111110 Load DRB counter from DA bus

LOADDRAB 000110111100 Load DRA/DRB

DECRDRA 010001111100 / Decrement DRA counter and branch if not zero
DECRDRB 010101111100 / Decrement DRB counter and branch if not zero
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Registered ALU

The 8832 is a 32-bit ALU with 64 registers that can be configured to operate as four
8-bit ALUs, two 16-bit ALUs, or a single 32-bit ALU.

The 8832 is controlled by the 39 bits that make up fields 17 through 27 of the
microinstruction (Table 17.7); these are supplied to the ALU as control signals. In
addition, as indicated in Figure 17.17, the 8832 has external connections to the 32-bit
DA bus and the 32-bit system Y bus. Inputs from the DA can be provided simultane-
ously as input data to the 64-word register file and to the ALU logic module. Input
from the system Y bus is provided to the ALU logic module. Results of the ALU and
shift operations are output to the DA bus or the system Y bus. Results can also be fed
back to the internal register file.

Three 6-bit address ports allow a two-operand fetch and an operand write to be
performed within the register file simultaneously. An MQ shifter and MQ register
can also be configured to function independently to implement double-precision
8 bit, 16-bit, and 32-bit shift operations.

Fields 17 through 26 of each microinstruction control the way in which data
flows within the 8832 and between the 8832 and the external environment. The
fields are as follows:

17. Write Enable. These two bits specify write 32 bits, or 16 most significant bits,
or 16 least significant bits, or do not write into register file. The destination
register is defined by field 24.

18. Select Register File Data Source. If a write is to occur to the register file, these
two bits specify the source: DA bus, DB bus, ALU output, or system Y bus.

19. Shift Instruction Modifier. Specifies options concerning supplying end fill bits
and reading bits that are shifted during shift instructions.

20. Carry In. This bit indicates whether a bit is carried into the ALU for this
operation.

21. ALU Configuration Mode. The 8832 can be configured to operate as a single
32-bit ALU, two 16-bit ALUs, or four 8-bit ALUS.

22. S Input. The ALU logic module inputs are provided by two internal multiplexers
referred to as the S and R multiplexers. This field selects the input to be provided
by the S multiplexer: register file, DB bus, or MQ register. The source register is
defined by field 25.

23. R Input. Selects input to be provided by the R multiplexer: register file or DA
bus.

24. Destination Register. Address of register in register file to be used for the desti-
nation operand.

25. Source Register. Address of register in register file to be used for the source
operand, provided by the S multiplexer.

26. Source Register. Address of register in register file to be used for the source
operand, provided by the R multiplexer.

Finally, field 27 is an 8-bit opcode that specifies the arithmetic or logical
function to be performed by the ALU. Table 17.9 lists the different operations that
can be performed.
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Table 17.9  TI 8832 Registered ALU Instruction Field (Field 27)

Group 1 Function
ADD H#01 R+S+Cn
SUBR H#02 (NOTR) +S + Cn
SUBS H#03 R = (NOTS) + Cn
‘INSC H#04 S+ Cn
INCNS. H#05 (NOTS) + Cn
INCR H#06 R +Cn
INCNR H#07 (NOTR) + Cn
XOR H#09 RXORS
AND H#0A RANDS
OR H#0B RORS
NAND H#0C RNANDS
NOR H#0D RNORS
ANDNR H#0E (NOTR)ANDS
Group 2 Function
SRA H#00 Arithmetic right single precision shift
SRAD H#10 Arithmetic right double precision shift
SRL H#20 Logical right single precision shift
SRLD H#30 Logical right double precision shift
SLA H#40 Arithmetic left single precision shift
SLAD H#50 Arithmetic left double precision shift
SLC H#60 Circular left single precision shift
SLCD H#70 Circular left double precision shift
SRC H#80 Circular right single precision shift
SRCD H#90 Circular right double precision shift
MQSRA H#A0 Arithmetic right shift MQ register
MQSRL H#B0 Logical right shift MQ register
MQSLL H#CO0 Logical left shift MQ register
MQSLC H#D0 Circular left shift MQ register
LOADMQ H#EO Load MQ register
PASS H#F0 Pass ALU to Y (no shift operation)
Group 3 Function
SET1 H#08 Set bit 1
Set0 H#18 Set bit 0
TB1 H#28 Test bit 1
TBO H#38 Test bit 0
ABS H#48 Absolute value
SMTC H#58 Sign magnitude/twos complement
ADDI H#68 Add immediate
SUBI H#78 Subtract immediate
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Table 17.9 Continued

BADD “H#88 | ByteaddRto'S

BSUBS H#98 Byte subtract S from R
‘BSUBR H¥A8 Byte subtract R from S

BINCS H#BS | Byte increment s

BINCNS = -] H#C8 | Byteincrement. negaﬁw$

BXOR H#DS Byte XORRandS
BAND , H#ES8 | Byte ANDR andS _
BOR ~ | H#FR8 | ByleORRandS —

~ Group4 | Function o

CRC H#00 : Cychcredund:mychametcrmm.
SEL H#O SelectSorR .~
SNORM H#20 Single length normah;c }
DNORM [ H#0 | Double length normabize
DIVRF H#40 Divide remainder fix
SDIVQF ‘ H¥50 Signed divide quotient fix
SMULI | H#60 Signed multiply iterate .
SMULT | H#70 Signed multiply terminate
SDIVIN ‘ H#80 Signed divide initialize

SDIVIS H#90 [ Signed divide start -

SDIVI | H#AD Signed divide itetate.
UDIVIS' H#BO | Unsigned divide start
UDIVI H#CO0 Unsngned dmde 1temte

SDIW e THFED ngned rﬁvxde termmate
UDIVIT .~ | H#F0 | Unsigneddivide terminate .
Coaprr [ wr | Lomamaenco niptom
CLR THHF . | Cear . -~ . . ..
"DUMPFF | H#5F. | Outputdivide/BCDflip-flops =
BCDBIN | H#F. | BCDtobinary. '

EX3C
"SDIVO

BINEX3

NOP32

As an example of the coding used to specify fields 17 through 27, consider the
instruction to add the contents of register 1 to register 2 and place the result in register
3. The symbolic instruction is

CONTI11 [17], WELH, SELRYFYMX, [24], R3, R2, R1, PASS + ADD
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The assembler will translate this into the appropriate bit pattern. The individual
components of the instruction can be described as follows:
¢ CONT11 is the basic NOP instruction.

* Field [17] is changed to WELH (write enable, low and high), so that a 32-bit
register is written into.

* Field [18] is changed to SELRFYMX to select the feedback from the ALU Y
MUX output.

* Field [24] is changed to designate register R3 for the destination register.

* Field [25] is changed to designate register R2 for one of the source registers.

* Field [26] is changed to designate register R1 for one of the source registers.

* Field [27] is changed to specify an ALU operation of ADD. The ALU shifter
instruction is PASS; therefore, the ALU output is not shifted by the shifter.

Several points can be made about the symbolic notation. It is not necessary to
specify the field number for consecutive fields. That is,

CONT11 [17], WELH, [18], SELRFYMX
can be written as
CONT11 [17], WELH, SELRFYMX

because SELRFYMX is in field 18.
ALU instructions from Group 1 of Table 17.9 must always be used in conjunc-
tion with Group 2. ALU instructions from Groups 3-5 must not be used with Group 2.

17.5 RECOMMENDED READING

There are a number of books devoted to microprogramming, Perhaps the most comprehensive
is [LYNC93]. [SEGE91] presents the fundamentals of microcoding and the design of microc-
oded systems by means of a step-by-step design of a simple 16-bit processor. [CART96] also
presents the basic concepts using a sample machine. [PARK89] and [TI90] provide a detailed
description of the TI 8800 Software Development Board.

[VASS03] discuss the evolution of microcode use in computer design and its current status.

; ‘Mwopromxr Archzrecture aud Mzcroprogrammmg Upper Saddle
nﬂccHaﬂ, 1996. i
M.eropmgmmned State ‘Machine Design. Boca Raton FL: CRC

ker, A, and Hamblen, J. An Introduction to Microprogramming with
es Designed for the Texas Instruments SN74ACTS800 Software Development
Board. Dallas, TX: Texas Instruments, 1989,

SEGE91 Segee, B, and Fleld J. Microprogramming and Computer Architecture, New
| York:Wiley, 1991,

TI90 Texas Instruments Inc. SN74ACTS80 Family Data Manual. SCSS006C, 1990.
VASS03 Vassiliadis, S.; Wong, S.; and Cotofana, S. “Microcode Processing: Positioning

. and Directions.” IEEE Micro, July-August 2003.
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17.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
control memory microinstruction encoding microprogrammed control unit
control word microinstruction execution microprogramming language
firmware microinstruction sequencing soft microprogramming
hard microprogramming microinstructions unpacked microinstruction
horizontal microinstruction microprogram vertical microinstruction

Review Questions

17.1  What is the difference between a hardwired implementation and a microprogrammed
implementation of a control unit?

17.2 How is a horizontal microinstruction interpreted?
17.3  What is the purpose of a control memory?
17.4 What is a typical sequence in the execution of a horizontal microinstruction?
17.5  What is the difference between horizontal and vertical microinstructions?
17.6 What are the basic tasks performed by a microprogrammed control unit?
17.7 What is the difference between packed and unpacked microinstructions?
17.8 What is the difference between hard and soft microprogramming?
17.9  What is the difference between functional and resource encoding?

17.10 List some common applications of microprogramming.

Problems

17.1 Describe the implementation of the multiply instruction in the hypothetical machine
designed by Wilkes. Use narrative and a flowchart.

17.2 Assume a microinstruction set that includes a microinstruction with the following
symbolic form:

IF (ACy = 1) THEN CAR «— (C,) ELSE CAR «— (CAR) + 1

where AC, is the sign bit of the accumulator and C,_g are the first seven bits of the
microinstruction. Using this microinstruction, write a microprogram that implements
a Branch Register Minus (BRM) machine instruction, which branches if the AC is
negative. Assume that bits C; through C,, of the microinstruction specify a parallel set
of micro-operations. Express the program symbolically.

17.3 A simple processor has four major phases to its instruction cycle: fetch, indirect,
execute, and interrupt. Two 1-bit flags designate the current phase in a hardwired
implementation.

a. Why are these flags needed?
b. Why are they not needed in a microprogrammed control unit?

17.4 Consider the control unit of Figure 17.7. Assume that the control memory is 24 bits wide.
The control portion of the microinstruction format is divided into two fields. A micro-
operation field of 13 bits specifies the micro-operations to be performed. An address
selection field specifies a condition, based on the flags, that will cause a microinstruction
branch. There are eight flags.

a. How many bits are in the address selection field?
b. How many bits are in the address field?
¢. What is the size of the control memory?
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KEY POINTS

® A traditional way to increase system performance is to use multiple proces-
sors that can execute in parallel to support a given workload. The two most
common multiple-processor organizations are symmetric multiprocessors
(SMPs) and clusters. More recently, nonuniform memory access (NUMA)
systems have been introduced commercially.

¢ An SMP consists of multiple similar processors within the same computer,
interconnected by a bus or some sort of switching arrangement. The most
critical problem to address in an SMP is that of cache coherence. Each
processor has its own cache and so it is possible for a given line of data to be
present in more than one cache. If such a line is altered in one cache, then
both main memory and the other cache have an invalid version of that line.
Cache coherence protocols are designed to cope with this problem.

¢ When more than one processor are implemented on a single chip, the con-
figuration is referred to as chip multiprocessing. A related design scheme
is to replicate some of the components of a single processor so that the
processor can execute multiple threads concurrently; this is known as a
multithreaded processor.

@ A cluster is a group of interconnected, whole computers working together
as a unified computing resource that can create the illusion of being one
machine. The term whole computer means a system that can run on its
own, apart from the cluster.

¢ A NUMA system is a shared-memory multiprocessor in which the access
time from a given processor to a word in memory varies with the location
of the memory word.

¢ A special-purpose type of parallel organization is the vector facility, which
is tailored to the processing of vectors or arrays of data.

Traditionally, the computer has been viewed as a sequential machine. Most computer
programming languages require the programmer to specify algorithms as sequences of
instructions. Processors execute programs by executing machine instructions in a
sequence and one at a time. Each instruction is executed in a sequence of operations
(fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the micro-operation
level, multiple control signals are generated at the same time. Instruction pipelining,
at least to the extent of overlapping fetch and execute operations, has been around
for a long time. Both of these are examples of performing functions in parallel. This
approach is taken further with superscalar organization, which exploits instruction-
level parallelism. With a superscalar machine, there are multiple execution units
within a single processor, and these may execute multiple instructions from the same
program in parallel.
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As computer technology has evolved, and as the cost of computer hardware has
dropped, computer designers have sought more and more opportunities for paral-
lelism, usually to enhance performance and. in some cases, to increase availability.
After an overview, this chapter looks at some of the most prominent approaches to
parallel organization. First, we examine symmetric multiprocessors (SMPs), one of the
earliest and still the most common example of parallel organization. In an SMP organi-
zation, multiple processors share a common memory. This organization raises the issue
of cache coherence, to which a separate section is devoted. Then we describe clusters,
which consist of multiple independent computers organized in a cooperative fashion.
Next, the chapter examines multithreaded processors and chip multiprocessors.
Clusters have become increasingly common to support workloads that are beyond the
capacity of a single SMP. Another approach to the use of multiple processors that we
examine is that of nonuniform memory access (NUMA) machines. The NUMA
approach is relatively new and not yet proven in the marketplace, but is often consid-
ered as an alternative to the SMP or cluster approach. Finally, this chapter looks at
hardware organizational approaches to vector computation. These approaches opti-
mize the ALU for processing vectors or arrays of floating-point numbers. They are
common on the class of systems known as supercomputers.

18.1 MULTIPLE PROCESSOR ORGANIZATIONS

Types of Parallel Processor Systems

A taxonomy first introduced by Flynn [FLYN72] is still the most common way of
categorizing systems with parallel processing capability. Flynn proposed the follow-
ing categories of computer systems:

* Single instruction, single data (SISD) stream: A single processor executes a
single instruction stream to operate on data stored in a single memory.
Uniprocessors fall into this category.

* Single instruction, multiple data (SIMD) stream: A single machine instruction
controls the simultaneous execution of a number of processing elements on a
lockstep basis. Each processing element has an associated data memory, so
that each instruction is executed on a different set of data by the different
processors. Vector and array processors fall into this category.

* Multiple instruction, single data (MISD) stream: A sequence of data is trans-
mitted to a set of processors, each of which executes a different instruction
sequence. This structure is not commercially implemented.

* Multiple instruction, multiple data (MIMD) stream: A set of processors simul-
taneously execute different instruction sequences on different data sets. SMPs,
clusters,and NUMA systems fit into this category.

With the MIMD organization, the processors are general purpose; each is
able to process all of the instructions necessary to perform the appropriate data
transformation. MIMDs can be further subdivided by the means in which the
processors communicate (Figure 18.1). If the processors share a common memory,



